CS 121: Relational Databases Winter 2026
Project 02: Query Plans and Evaluation

Project Overview

In this project, you will implement a simple query planner that translates a wide range of parsed SQL expressions
into query plans that can be executed, complete the implementation of a nested-loop join plan node, and create
automated tests for your join support.

Before Starting

NanoDB assignments frequently rely on the correctness of earlier assignments. Your Project 01 should pass all its
tests — if you were not able to finish (including with an extension), talk to Prof. Ordentlich ASAP. Additionally, we've
distributed some updates and additional files to your repository. If you don’t have the file doc/02-joins-design.md,
make sure that your local changes are committed, then git pull --rebase (or merge).

Plan Nodes

As discussed in lecture, NanoDB'’s query evaluator follows the iterator model and uses query plans made up of
plan nodes, where each node requests tuples from its children. You can refer to PlanNode and other classes in the
plannodes package for documentation on specific methods we mention here.

A query plan is a binary tree of PlanNodes, with leftChild and rightChild. Most data about a PlanNode is set
via the constructor. As with relational algebra operations, every plan node specifies the schema of its output tuples.
These values, along with other statistics, must be computed once an entire query plan is assembled; this is done
by calling the prepare() method on the root plan node. This operation will recurse down the plan-tree so that all
nodes have a chance to prepare themselves. The query evaluator expects that all plans have already been prepared
before it starts evaluating!

Query Planner

NanoDB is currently unable to execute anything except the simplest SQL statements, because it has no way of
generating more complex query plans from a SQL statement. NanoDB supports different planners being plugged
into the database via the Planner interface. The two most relevant methods in the interface are:

SelectNode makeSimpleSelect(String tableName, Expression predicate,

List<SelectClause> enclosingSelects

This constructs a query plan (consisting of a single SelectNode) from a query of the form
“SELECT * FROM t WHERE ...". It's used by UPDATE and DELETE statements to support the optional WHERE clause.

\. J

PlanNode makePlan(SelectClause selClause, List<SelectClause> enclosingSelects)

This constructs a query plan (consisting of a single SelectNode) from a standard parsed SQL query. Each SELECT
statement is parsed into a SelectClause as the root of the AST, which contains all components of the statement.
This includes the list of values in the SELECT clause, the tree of join expressions in the FROM clause, and the
predicate in the WHERE clause. You can find the Clause classes in the queryast package.

enclosingSelects is the list of enclosing queries if this is a nested subquery. In this project, it will be empty

or null, since we're not handling subqueries.

\. J

You can see example implementations of these functions in queryeval.SimplestPlanner. In particular, the makePlan
function performs some basic error-checking, then dispatches to makeSimpleSelect, which makes sure to call
selectNode.prepare() before returning.


https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/plannodes/PlanNode.html
https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/plannodes/package-summary.html
https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/queryeval/Planner.html
https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/queryast/SelectClause.html
https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/queryast/package-summary.html

Setting the Planner

You can configure NanoDB to use a specific planner as the default with the nanodb.plannerClass property. You can
also set it by updating the DEFAULT _PLANNER_CLASS constant in the server.properties.ServerProperties class.

Adding Planner Features

Right now, SimplestPlanner is only able to pick tuples from a single table, and nothing else. Your task is to add
support for many more SQL features in queryeval.SimplePlanner. This query planner is not focused on being
optimal, so we can build a plan by following the conceptual SQL evaluation order discussed in class. That is, your
makePlan will eventually follow this high-level approach:

PlanNode plan = null;

if (FROM-clause is present)
plan = generate FROM clause plan();

if (WHERE-clause is present)
plan = add WHERE clause to(plan);

if (GROUP-BY-clause and/or HAVING-clause is present)
plan = handle grouping and aggregation(plan);

if (ORDER-BY-clause is present)
plan = add ORDER BY clause to(plan);

// There's always a SELECT clause of some sort!
plan = add SELECT clause to(plan);

plan.prepare();

Some clauses are more complex to translate to a query plan than others, so we'll build this up piece by piece.

Task 1: Basis

Update SimplePlanner#makePlan to support the following SQL features:
= FROM clauses with one table

= FROM clauses that are null (e.g. SELECT 3 + 2 AS five;)

= WHERE clauses

= ORDER BY clauses

= SELECT clause

Some notes and guidelines:

= Throughout the project, you should generate the minimal plan necessary. For example, don't generate a
ProjectNode if the SELECT clause specifies *.

= Your implementation does not have to support aliases within the ORDER BY clause. This allows us to put ORDER
BY before SELECT.

= See the PlanUtils#addPredicateToPlan method, and the SortNode class.

To make NanoDB use SimplePlanner, make sure to update the DEFAULT PLANNER CLASS in ServerProperties

. J



https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/plannodes/ProjectNode.html
https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/plannodes/PlanUtils.html#addPredicateToPlan(edu.caltech.nanodb.plannodes.PlanNode,edu.caltech.nanodb.expressions.Expression)
https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/plannodes/SortNode.html

The EXPLAIN Command

Like many databases, NanoDB provides an EXPLAIN command that can be used to see what the database decides

to do when you run a query. For example, for a table CREATE TABLE t (a INTEGER, b VARCHAR(20) ); we can use
EXPLAIN SELECT b FROM t WHERE a < 5;

Explain Plan:
Project[values: [T.B]] cost is unknown
FileScan[table: T, pred: T.A < 5] cost is unknown

Use make run to start the NanoDB CLI. Then run the above two commands. If your Task 1 implementation is correct
it should match the above output. The “cost is unknown” is because we haven't yet implemented plan costing or
statistics collection — next project!

Join Trees

Task 2: Join Trees

Update SimplePlanner#makePlan to support the following SQL features:
= FROM clauses involving two or more tables being joined together

= Subqueries in the FROM clause

Some notes and guidelines:

= Refer to the documentation for the FromClause class.

= To implement this, you should start by moving your one-table FROM clause handler to a helper function,
then recursively looking at the children of the FROM clause. Add NestedLoopJoinNodes to your plan where
appropriate.

= Make sure to check isRenamed and apply a RenameNode when necessary.

= Handle (two-table) NATURAL JOINs and USING by projecting out duplicate column names — see
FromClause#getComputedSelectValues.

| J

You'll implement the internals of the NestedLoopJoinNode in a later task, though you're welcome to jump forward
to it before finishing the planner.

As some minor checks for Task 2, first generate the following tables in the NanoDB CLI.

CMD> CREATE TABLE t1 (a INTEGER, b INTEGER);
CMD> CREATE TABLE t2 (a INTEGER, c INTEGER);

Next, run the following queries. You should see similar outputs.

CMD> EXPLAIN SELECT * FROM t1 AS x JOIN t2 AS y ON x.a = y.a;
Explain Plan:
NestedLoop[joinType: INNER, pred: x.a == y.a] cost is unknown
Rename[resultTableName=x] cost is unknown
FileScan[table: t1] cost is unknown
Rename[resultTableName=y] cost is unknown
FileScan[table: t2] cost is unknown

CMD> EXPLAIN SELECT * FROM t1 JOIN t2 USING (a);
Explain Plan:
Project[values: [tl.a AS a, tl.b, t2.c]] cost is unknown
NestedLoop[joinType: INNER, pred: tl.a == t2.a] cost is unknown


https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/queryast/FromClause.html
https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/plannodes/NestedLoopJoinNode.html
https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/plannodes/RenameNode.html

FileScan[table: t1] cost is unknown
FileScan[table: t2] cost is unknown

CMD> EXPLAIN SELECT * FROM (SELECT * FROM tl1) AS s JOIN t2 ON s.a = t2.a;
Explain Plan:
NestedLoop[joinType: INNER, pred: s.a == t2.a] cost is unknown
Rename[resultTableName=s] cost is unknown
FileScan[table: t1] cost is unknown
FileScan[table: t2] cost is unknown

Grouping and Aggregation

As discussed in class, grouping and aggregation is challenging to translate from SQL to relational algebra; because the
SELECT clause mixes grouping/aggregation and projection, and the HAVING clause mixes selection and aggregation.
These expressions must be scanned for aggregates so that the grouping plan node can be initialized correctly, and
so that we remove aggregates and replace them with placeholder variables.

Scanning and/or Transforming Expressions

Since various parts of NanoDB want to traverse expressions, we implement the visitor pattern to handle traversing
and transforming expression trees. In the expressions package, the Expression base class has a traverse() method
that traverses the entire hierarchy, and takes an ExpressionProcessor implementation.

The processor has an enter(Expression) method that is called as each expression node is visited. Then the node's
children are recursively traversed; then the leave(Expression) method is called, again with the node as an argument.
(That is, enter() is called in preorder and leave() is called in postorder.) Note that leave() returns an Expression,
which allows the processor to mutate the tree by returning a different node than it was called with.

An example ExpressionProcessor implementation is the SymbolFinder class nested inside Expression, used by
Expression#getAllSymbols() (though it doesn't modify the tree).

Task 3: AggregateFunctionExtractor

Complete the implementation of the AggregateFunctionExtractor, which will identify aggregate functions in
expressions, map each one to an auto-generated name, and update the expression to use the new name.

Some notes:
= See the aggregates argument in the HashedGroupAggregateNode constructor.
= You should feel free to modify the class as necessary, including adding instance variables or helper methods.

= |If an aggregate appears multiple times, don't create multiple names or store multiple FunctionCalls.

= Nested aggregates (e.g. MAX(AVG(x))) are errors; throw InvalidSQLException if encountered.

.



https://en.wikipedia.org/wiki/Visitor_pattern
https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/expressions/Expression.html

Identifying and Replacing Aggregate Functions
Since the traverse() function is recursive, the result needs to be used after the top-level call. As an example, when
you're iterating over SelectClause expressions for aggregates, you'll want to write code like this:

for (SelectValue sv : selectValues) {
// Skip select-values that aren't expressions
if (!sv.isExpression())
continue;

Expression e = sv.getExpression().traverse(processor);
sv.setExpression(e);

Function calls are a kind of expression, represented by the FunctionCall class in the expressions package. You can
use FunctionCall#getFunction() to retrieve the specific function, and see if it's an aggregate function, like so:

if (e instanceof FunctionCall call) {
Function f = call.getFunction();
if (f instanceof AggregateFunction) {
// Do stuff
}

If you want to replace an aggregate function call with a column reference, use the ColumnValue expression class.

Task 4: Using the AggregateFunctionExtractor

Back in SimplePlanner#makePlan(), use your AggregateFunctionExtractor to rewrite the SELECT values and
the HAVING clause. Then, use a HashedGroupAggregateNode in your plan to account for a GROUP BY node (and
add a predicate for the HAVING clause if necessary).

Some notes:

= Not all expressions can contain aggregates. |f the WHERE, ON, GROUP BY, or FROM clause contains an aggregate,
throw an InvalidSQLException. You may want to modify your AggregateFunctionExtractor slightly to
support this.

At this point, make hw2 tests should pass.



https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/expressions/FunctionCall.html

Plan Node Lifecycle
Now that we're about to implement a PlanNode, we go into more details about their internals.

Before a plan node can produce any rows, its initialize() method must be invoked to set up evaluation-time
resources, so that the next invocation of getNextTuple() will return the first tuple. Typically, this method invokes
super.initialize() to initialize its parent class, then it initializes its own internal members, and finally invokes
initialize() on its left and right children.

The getNextTuple() method is where the plan node implements its logic. On each call, it returns single tuple gener-
ated by the plan node (or null if the node is exhausted). Many plan nodes must call their children’s getNextTuple()
multiple times before being able to return their own next tuple. See SelectNode and SimpleFilterNode for an
example of this, where retrieved tuples must be tested against the predicate. Some plan nodes must consume all
data from their children before producing any results (e.g. sorting, hash-based grouping).

Some plan nodes may need to iterate over the tuples from their children multiple times, including the nested loop
join node. Subplans can be restarted at any point by calling initialize(). For some plan nodes, like a file scan,
resetting to the beginning is just seeking to the start of the tuple file. However, other plan nodes may not have their
results on disk, and will need to recompute their results from scratch. If a node implements any external memory
algorithms, initialize() will need to handle these properly.

Finally, when the evaluator is done executing, it calls cleanUp() on the root plan node, which recurses in a similar
way. Most plan nodes require no clean up, but external memory algorithms do.


https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/plannodes/PlanNode.html

Nested-Loop Join

The nested-loop join algorithm is as follows: given two tables r and s, to compute (r X red s), do the following:

for tr in r:
for ts in s:
if pred(tr, ts):
add join(tr, ts) to result

Table r is the “outer relation”, and s the “inner relation”. In NanoDB, and many other database implementations,
the left child is the outer relation, and the right child is the inner relation.

What makes this algorithm nontrivial to implement is the streaming (demand-driven, pull-based, or iterator) model
discussed in class, where plan nodes must return the next tuple anytime a call to getNextTuple() is made. Because
of this, the plan node must store some internal state between calls, like Java Iterators and next().

A partial implementation of this is provided in the NestedLoopJoinNode class, which currently has the innermost if-
statement and call to joinTuple, but the loop itself (getTuplesToJoin) is not implemented. The class has three
fields that are used for tracking the execution state:

= done, to indicate when the plan node has completely consumed its inputs.

= leftTuple and rightTuple, the most recent tuple retrieved from the left or right child plan nodes, respectively.

Task 5: NestedLoopJoinNode

Complete the implementation of the NestedLoopJoinNode class to support inner joins, as well as left-outer and
right-outer joins. The bulk of your work will be in the getTuplesToJoin, where you iterate over the rows in the
left and right child nodes to update the next leftTuple and rightTuple that should be considered.

Some notes:

= When your inner relation is exhausted, you can use initialize() to reset it back to the start.
= Make sure that you call unpin when you're done with a tuple.

= To implement left-outer joins, you will need to add field(s) to the class.

= The superclass ThetaJoinNode provides the swap function, which will help with implementing right-outer joins
without much additional code.

= Ignore the TODO comment in the resetToLastMark function. You do not need to complete any implementation
for that.

| J

You may notice there's no tests for (simple) JOIN behavior. Your final task is to verify correctness of your own join node
implementation with a set of integration tests. In the src/test/.../sql directory, you'll find a simple framework
for issuing queries against the NanoDB query processor, as well as test classes for some of the features you've just
implemented. The constructors of these classes reference properties in the resources/.../sql/test_sql.props file,
where each property specifies the SQL initialization code necessary to run the corresponding test cases.


https://relationaldatabase.systems/26wi/nanodb/apidocs/edu/caltech/nanodb/plannodes/NestedLoopJoinNode.html

Task 6: Testing Joins

In the TestSimpleJoins class, write tests to exercise your join support. Some suggestions for testing:
= (Inner, left-outer, right-outer) joins with an empty left table and a non-empty right table, and vice-versa
= (..) joins with an empty left table and an empty right table

= (..) joins where a given row in the left table matches with several rows in the right table, and vice-versa

Document what your tests are doing in some way (comments, function names, etc.). Your tests should pass.

. J

NATURAL JOIN for Multiple Tables (Extra Credit)
NanoDB currently doesn't have (full) support for the NATURAL JOIN or USING clauses — in particular, it doesn't
support joining multiple tables. Consider the following schemas and query:

tl (int a, int b)
t2 (int a, int c)
t3 (int a, int d)

SELECT * FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;

The resulting schema should be (a, tl.b, t2.c, t3.d). The first join of t1 and t2 works fine, producing the
schema (a, tl.b, t2.c), where duplicate a's have been projected out. However, the second join (with t3) has an
issue with column ambiguity: since the intermediate table is unnamed, the unqualified column reference a in the join
condition a = t3.a (and in the projection) is ambiguous!

Like we introduced aliases for expressions, we can fix this by introducing placeholder names for intermediate tables,
making the schema for the intermediate join #R1(a, tl.b, t2.c). This allows the second join to be written as
#R1l.a = t3.a (as well as the project). Unfortunately, doing this is more complex than just adding a RenameNode,
because of how the schema is computed in NanoDB.

Extra Credit: Multi-Table NATURAL JOIN and USING

Add support for using NATURAL JOIN and USING with multiple tables in NanoDB. You may not handle this by
ignoring ambiguity in an unqualified column reference (when the table name is null), since this will ignore real
ambiguous queries. You will almost certainly need to understand how the FromClause builds the join schema
that the join node uses. Good luck. If you manage this, we'll be excited to talk about how.

There's some existing tests in the TestNaturalUsingJoins. At least these should pass; but you should almost
certainly add more tests to exercise different join trees. You can add these to your test suite by removing the
ITestNaturalUsingJoins flag from the HW2 TEST EXCLUDES variable in the Makefile.

| J

Design Document

Design Doc

Answer the questions in the file doc/02-joins-design.md in the document itself.

Submitting
Once you are finished, make sure your code is pushed to GitLab. Then, submit the commit hash you would like to
be reviewed on Gradescope.

For more details, see the Project Submission instructions on the course website.



	Project Overview
	Before Starting
	Plan Nodes
	Query Planner
	Setting the Planner
	Adding Planner Features
	The EXPLAIN Command
	Join Trees
	Grouping and Aggregation
	Scanning and/or Transforming Expressions
	Identifying and Replacing Aggregate Functions

	Plan Node Lifecycle
	Nested-Loop Join
	NATURAL JOIN for Multiple Tables (Extra Credit)

	Design Document
	Submitting

