CS 121: Relational Databases Winter 2026
Project 01: Heap Files

Project Overview

In this project, you will complete and optimize the storage layer for NanoDB. While the first task is small in scope
and is intended to help familiarize you with the codebase, the second task involves some more complex design and
optimization decisions.

Setup

Register for the assignment by going to the Airtable link on the course website, which will create you a repository
on GitLab with the starter code. You will be working in this same repository for every NanoDB assignment, though
we will distribute occasional patches.

Then follow the NanoDB setup guide to install necessary tools and software.

NanoDB Tuples

NanoDB is a very large codebase, because database engines are very large applications. We'll call out specific areas
you should familiarize yourself with, but there are many portions that are handled for you already (such as query
parsing and file resolution).

NanoDB is divided into various packages, each dealing with some primary component of a database. In this project,
we will be working within the storage package, which manages the database’s interaction with disk; and the
storage.heapfile package, which implements heap tuple files (discussed in class).

» Page 0 (or block 0) is the header page of the table file, and stores details such as the table's schema and other
metadata. No tuples are stored in page 0.

The HeaderPage class provides some lower-level operations to work with fields inside this page.

= All other pages in the table file are data pages, using the slotted-page data structure described in class. The
DataPage class again provides lower-level operations to work with these.

» The HeapTupleFileManager class provides functionality to create, open, and delete tuple files using heap-file
organization.

» The HeapTupleFile class provides functionality to interact with a specific tuple file. This relies heavily on the
HeaderPage and DataPage classes.

» The HeapFilePageTuple class represents individual tuples, whose data is backed by the file block that contains
the tuple. Much of the page tuple abstraction is in the PageTuple class, so that we can share tuple storage code
across multiple file formats.

Familiarize yourself with the purpose of each of the files mentioned above.




Modifying Tuples

Tuple Deletion
When a tuple is to be deleted, the HeapTupleFile#deleteTuple() method is called, which determines the slot-index
of the tuple and calls DataPage#deleteTuple().

DataPage#deleteTupleDataRange (DBPage dbPage, int off, int len)

The deleteTupleData function removes a sequence of bytes from the current tuple data in the page, sliding
tuple data below the offset forward to fill the gap. Remember to modify slots if necessary!

Reading insertTupleDataRange may be helpful.

DataPage#deleteTuple (DBPage dbPage, int slot)

The deleteTuple function follows these constraints as discussed in class:

= Reclaims space using deleteTupleDataRange().
= Updates the slot value to EMPTY SLOT.

= Reclaims trailing empty slots.

| J

Implement the above two functions to support tuple deletion (DELETE) in NanoDB.




Tuple Updates

When a tuple is updated, PageTuple#setColumnValue() will call one of two functions, depending on whether the
new value is null:

PageTuple#setNullColumnValue()

Updates the bit in the tuple's null-bitmask, and removes the space the old value used to occupy.

PageTuple#setNonNullColumnValue()

Replaces the existing value with a new value, shifting data if necessary.

Don’'t worry about the case when the new value of the tuple overflows the page.

Some additional PageTuple functions you will find useful:
= getColumnValueSize()
» Use schema.getColumnInfo(iCol).getType() to get a ColumnType.
= isNullValue() and setNullFlag()
= writeNonNullValue()

Task 1.2

Implement the above two functions to support tuple updates (UPDATE) in NanoDB.

Both functions should update the valueOffsets member by changing as few values as possible. (This means
you shouldn't call PageTuple#computeValueOffsets, but it will be helpful to read it.)

All of Task 1 is tested together. You can run the tests for this task by using any of the following methods:
= Terminal: Run make clean then make build to build the target. Then run make hwl.
» The outcome of the tests will be printed to the terminal and also available under the target directory in a
file target/surefire-reports/index.html.
= IntelliJ: Select the hwl run configuration from the toolbar and click Run.

Expected Behavior: All 121 tests in the hwl group should pass.




Buffer Manager

The BufferManager is the database’s page cache, and needs to decide which pages to keep in memory or evict. This
decision is complicated by the fact that queries may be accessing many different tuples, and the page containing
that tuple data must be kept in memory until the query is finished using it.

A simple and common approach to solve this problem is to “pin" disk pages in memory while they are being used;
the BufferManager cannot evict a page that is currently pinned. When a page is no longer in use, it is “unpinned,”
allowing the BufferManager to evict the page. This is a simple reference-counting mechanism, but it works very well
to let the BufferManager know what it may safely evict.

In NanoDB, both DBPage and Tuple objects may be pinned and unpinned. The BufferManager works with pages, and
queries work with tuples. When a DBPage is retrieved from the BufferManager, its pin-count is always incremented so
that it won't immediately be evicted out from under the requester. Similarly, when a new tuple is retrieved, the tuple
pins its backing DBPage to prevent the page from disappearing out from under it. When a tuple is unpinned, it will
automatically unpin its backing DBPage. These objects may also be re-pinned by various components; however, they
must eventually be unpinned, or else the BufferManager will not be able to reclaim the corresponding buffer space.

Your implementation should properly unpin tuples (and disk pages, if necessary) when they are no longer needed.
We can simplify this task by recognizing that we only need to unpin a tuple when it is no longer being used by the
database engine.

As you update your tuple insertion, you should concentrate on the following areas:

= The HeapTupleFile implementation may need to pin and/or unpin pages as they are traversed. As an example,
the HeapTupleFile#getFirstTuple() method already manages page-pinning and unpinning properly.

= The HeapTupleFileManager may also need to pin and unpin the header page.

The NanoDB Buffer Manager maintains a strict upper bound on the size of the buffer pool. The size is exposed as
the “nanodb.pagecache.size"” property, and can be read or written during operation. While you are implementing
the proper pinning/unpinning steps in your database, you may want to leave the pool size very large (its max size
is 1GiB), but once you have pinning/unpinning working properly then you should be able to shrink the buffer-pool
size down to very small sizes (the minimum is 64KiB, the largest size of a single data page) and still see correct
operation.



Optimizing Tuple Insertion
Initially, NanoDB has a very simplistic approach to managing its heap files. In each heap file, NanoDB devotes the
first page (page 0) to schema and other high-level details, and the remaining pages are devoted to tuple storage.

When NanoDB inserts a new tuple into a heap file, it uses a first-fit strategy to search pages in order. If there's no
page with enough space, it creates a new page and stores the tuple there. This approach is very slow (O(NQ) page
reads) for adding a large number of tuples, but it does use space reasonably effectively. This approach is implemented
in HeapTupleFile#addTuple(), and is similar to an implicit list allocator.

Some notes about performance:

= Key constraints cannot be enforced efficiently without indexes, which we will implement later in the term. At this
point, though, NanoDB includes code to enforce them inefficiently, so you will want to avoid using tables with
primary or foreign keys in your testing.

» The BufferManager is configured to unpin and flush all in-memory pages after every command. This is not a
good strategy in normal operation, because if one command accesses a data page, it's likely that a subsequent
command will access the same page.

In this project, though, we care about the performance of the storage layer, not the cache — so we
flush the BufferManager after every command to make issues more apparent by enabling the property
nanodb. flushAfterCmd.

However, it will also nag you about this if too many pages are still pinned at the end of your queries. Releasing
pages when they are no longer necessary means your database will operate more efficiently.

We can compare the performance of heap file implementations with two metrics, which can be viewed with the SHOW
'STORAGE' STATS; command:

» storage.pagesRead and storage.pagesWritten: the number of disk pages read and written since the server was
started. (Note that this is independent of the actual size of the pages.)

= storage.fileDistanceTraveled: an approximation of the absolute distance traveled within files as pages are
accessed, in units of 512-byte sectors. In a typical scenario using an HDD, this would very roughly approximate
the amount of distance that the disk head would have to move.

Ideally, as you improve your insert performance, you should see both the total number of accesses and the distance
traveled decrease dramatically.

We will be benchmarking against some large files, provided in the schemas/insert-perf directory:

= ins20k.sql — 20,000 rows of data. With the initial implementation, this file occupies 2.7MB of space, reads
~3,000,000 pages, and has a “distance traveled” value of ~100,000,000.

= ins50k.sql — 50,000 rows of data. With the initial implementation, this file occupies 6.7MB of space, reads
~20,000,000 pages, and has a “distance traveled” value of ~1,000,000,000.



Modify the storage format to improve the insert performance, by using the page directory approach discussed in
class. Some constraints:

= Your implementation should not rely on a specific page size — they can vary from 512B up to 64K.
= Your implementation must support a large number of pages (up to ~64K).
= Your implementation must not use table statistics.

= Your data file should be within 3-5% of the initial implementation’s file size. Excessively large data files will
not receive credit.

= You must actually modify the storage file format; do not just modify the in-memory data.
= You should make sure to include necessary pin/unpin calls.

Some suggestions:

= When you need to add a new page to a table file, you should be aware of the method DBFile#getNumPages ()
that returns how many pages are currently in the file. Every DBPage has a reference to the DBFile object that
it came from, so it should be very easy to tell where the new page should reside.

= You will likely need to modify the HeapTupleFile, HeaderPage, and DataPage classes.

= You are free to add an additional class(es), such as to represent an internal page directory, though it's not
necessary to do so.

= HeapTupleFile contains several functions to work with tuples contained inside the heap file (scan, insert,
update, delete) — make sure that each of these functions is updated to work with your new storage format.

Verifying Your Work: We have provided a benchmark script to measure your improvements.
= Terminal: Run make hwl-optimizations.

= Intellij: Select the hwl-optimizations run configuration from the toolbar and click Run.

Expected Behavior: There are no direct tests for Task 2. Compare your results against the baseline numbers
listed above, the numbers should decrease dramatically. Your database should continue to work correctly as well.

.

Design Document

Design Doc

Answer the questions in the file doc/heapfile-design.md in the document itself.

Submitting

Once you are finished, make sure your code is pushed to GitLab. Then, submit the commit hash you would like to
be reviewed on Gradescope.

For more details, see the Project Submission instructions on the course website.



	Project Overview
	Setup
	NanoDB Tuples
	Modifying Tuples
	Tuple Deletion
	Tuple Updates

	Buffer Manager
	Optimizing Tuple Insertion
	Design Document
	Submitting

